Thursday, February 19th, 2015 - National Institute for Materials Science

Tsukuba, Japan - Catalytic converters that change the toxic fumes of automobile exhaust to less toxic pollutants only reached the market in the mid-1970s. They are formed of a catalyst - usually in the form of a precious metal such as platinum, palladium, or rhodium - a catalyst support material, and a wash-coat designed to disperse the catalytic materials over a wide surface area.

Toyota Central R&D Labs. Inc. in Japan are involved in research to develop catalysts that are controlled at the quantum-level. With this level of control, "we can expect an extreme reduction of precious metal usage in automotive exhaust catalysts and/or fuel cells," says Dr. Yoshihide Watanabe, chief researcher at the Toyota Central R&D Labs in Japan.

He reviewed research on different types of catalytic reactions involving metal clusters whose sizes were atomically controlled.

Metal cluster chemistry has been developing rapidly since the mid-20th century. A cluster is a group of atoms or molecules formed by interactions varying in strength from very weak to strong. Some naturally occurring clusters are known to be involved in catalytic reactions. The study of metal clusters is inspiring great interest, partially for the potential use of synthetic clusters in industrial applications, such as catalysts in catalytic converters.

He pointed out that not much research has been done in the area of atomically controlled cluster catalysis, with the exception of studies on carbon monoxide oxidation reaction.

His research indicates that catalytic activity is strongly affected by the electronic structure of clusters, their geometry on a support material, and the interaction between the cluster and the material. Thus, the catalytic activity of clusters can be enhanced by controlling cluster size and the interaction between the clusters and the support material. This is important, because enhancing the catalytic activity of some clusters may greatly reduce the utilization of precious metals as catalytic agents. A few studies that try to understand how the catalytic properties of size-controlled clusters are affected at the quantum level. Although several mechanisms for these effects are suggested, the field is still in progress, he says.

As a result of his review, Watanabe recommends further studies that investigate how catalytic reaction rates are affected by temperature. He says that applying computer simulations, known as computational chemistry, can lead the way towards developing quantum-controlled catalysts formed from atomically precise clusters.

For more information, contact

Dr Yoshihide Watanabe
TOYOTA Central R&D Labs. Inc.
41-1 Yokomichi, Nagakute,
Aichi 480-1192, JAPAN

Atomically precise cluster catalysis towards quantum controlled catalysts
Watanabe 2014 Sci. Technol. Adv. Mater. 15 (2014) 063501 (12pp)
The paper is available for download from

Photo credit: "Toyota Plant Ohira Sendai" by Bertel Schmitt - Own work.
Licensed under CC BY-SA 3.0 via Wikimedia Commons -

Journal Information

Science and Technology of Advanced Materials (STAM) is the leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international materials community across the disciplines of materials science, physics, chemistry, biology as well as engineering.

The journal covers a broad spectrum of materials science research including functional materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications

For more information about the journal Science and Technology of Advanced Materials, please contact

Mikiko Tanifuji
Publishing Director
Science and Technology of Advanced Materials

Press release distributed by ResearchSEA for National Institute for Materials Science.

Contact Profile

Mikiko Tanifuji



Toyota Central R&D Labs. Inc., National Institute for Materials Science


More Formats